收稿日期:
2023-07-06
修回日期:
2023-07-24
接受日期:
2023-08-08
出版日期:
2024-05-25
发布日期:
2023-08-24
通讯作者:
李桐
E-mail:tong@dlut.edu.cn
基金资助:
Mi XU, Zebei MAO, Bo WANG, Tong LI()
Received:
2023-07-06
Revised:
2023-07-24
Accepted:
2023-08-08
Online:
2024-05-25
Published:
2023-08-24
Contact:
Tong LI
E-mail:tong@dlut.edu.cn
Supported by:
摘要:
各向异性材料广泛存在于各种机械设备的承重构件中。与各向同性材料不同,各向异性材料中不同材料相的分布和方向,可以根据载荷条件调整承重构件的力学性能。本文提出了一种各向异性材料分布的优化方法,即等效变形模量(EDM)算法,以有效地优化各向异性薄板的承载能力。该算法实现了对薄板抗弯能力的多模态协同优化,解决了传统优化算法中特征值重叠的问题,在航空领域中将起到重要作用。以短纤维增强聚合物薄板的纤维取向优化为例,在不改变薄板质量和形状的前提下,与传统优化算法相比,EDM算法可以将临界屈曲载荷提高28.9%,将计算成本降低98.1%。此外,EDM算法还被应用于机身中形状不规则的承重构件设计中,并使其临界屈曲载荷提高27.2%~30.8%。
中图分类号:
许敉, 毛泽钡, 王博, 李桐. 快速优化薄板中各向异性材料分布的等效变形模量算法[J]. 航空学报, 2024, 45(10): 229273-229273.
Mi XU, Zebei MAO, Bo WANG, Tong LI. An equivalent⁃deformation⁃modulus algorithm for fast optimization of anisotropic material distribution in thin plates[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 229273-229273.
1 | WENK H R, VAN HOUTTE P. Texture and anisotropy[J]. Reports on Progress in Physics, 2004, 67(8): 1367-1428. |
2 | DHARMAVARAPU P, M B S S R. Aramid fibre as potential reinforcement for polymer matrix composites: A review[J]. Emergent Materials, 2022, 5(5): 1561-1578. |
3 | LI T, WANG Z X, ZHANG H, et al. Effect of aramid nanofibers on interfacial properties of high performance fiber reinforced composites[J]. Composite Interfaces, 2022, 29(3): 312-326. |
4 | MORAMPUDI P, NAMALA K K, GAJJELA Y K, et al. Review on glass fiber reinforced polymer composites[J]. Materials Today: Proceedings, 2021, 43: 314-319. |
5 | SATHISHKUMAR T P, SATHEESHKUMAR S, NAVEEN J. Glass fiber-reinforced polymer composites⁃A review[J]. Journal of Reinforced Plastics and Composites, 2014, 33(13): 1258-1275. |
6 | LI Y G, LI N Y, GAO J. Tooling design and microwave curing technologies for the manufacturing of fiber-reinforced polymer composites in aerospace applications[J]. The International Journal of Advanced Manufacturing Technology, 2014, 70(1): 591-606. |
7 | LI Y G, LI N Y, ZHOU J, et al. Microwave curing of multidirectional carbon fiber reinforced polymer composites[J]. Composite Structures, 2019, 212: 83-93. |
8 | AN Q L, CHEN J, CAI X J, et al. Thermal characteristics of unidirectional carbon fiber reinforced polymer laminates during orthogonal cutting[J]. Journal of Reinforced Plastics and Composites, 2018, 37(13): 905-916. |
9 | KIM J W, KIM H S. Study on fibre orientation and fibre content of glass fibre reinforced polymer[J]. Materials Research Innovations, 2014, 18(sup2): S2-482-S2-487. |
10 | KIM J W, KIM H S, LEE D G. Study on fibre orientation of weld line parts during injection moulding of fibre reinforced plastic by image processing[J]. Materials Research Innovations, 2011, 15(sup1): s303-s306. |
11 | DO T T, LEE D J. Analysis of tensile properties for composites with wrinkled fabric[J]. Journal of Mechanical Science and Technology, 2010, 24(2): 471-479. |
12 | ZARUTSKII V A, SIVAK V F. Experimental analysis of the natural vibrations and stability of cylindrical shells reinforced with rectangular plates[J]. International Applied Mechanics, 2008, 44(5): 562-564. |
13 | HADJILOIZI D A, KALAMKAROV A L, GEORGIA DES A V. Plane stress analysis of magnetoelectric composite and reinforced plates: Applications to wafer- and rib-reinforced plates and three-layered honeycomb shells[J]. ZAMM - Journal of Applied Mathematics and Mechanics, 2017, 97(7): 786-814. |
14 | WANG Z G. Recent advances in novel metallic honeycomb structure[J]. Composites Part B: Engineering, 2019, 166: 731-741. |
15 | ZHANG L, LIU B, GU Y, et al. Modelling and characterization of mechanical properties of optimized honeycomb structure[J]. International Journal of Mechanics and Materials in Design, 2020, 16(1): 155-166. |
16 | HAMM C E, MERKEL R, SPRINGER O, et al. Architecture and material properties of diatom shells provide effective mechanical protection[J]. Nature, 2003, 421(6925): 841-843. |
17 | STUDART A R. Biological and bioinspired composites with spatially tunable heterogeneous architectures[J]. Advanced Functional Materials, 2013, 23(36): 4423-4436. |
18 | ZANNONI C, MANTOVANI R, VICECONTI M. Material properties assignment to finite element models of bone structures: A new method[J]. Medical Engineering & Physics, 1999, 20(10): 735-740. |
19 | REZNIKOV N, SHAHAR R, WEINER S. Bone hierarchical structure in three dimensions[J]. Acta Biomaterialia, 2014, 10(9): 3815-3826. |
20 | PARSONS A J, AHMED I, HAN N, et al. Mimicking bone structure and function with structural composite materials[J]. Journal of Bionic Engineering, 2010, 7: S1-S10. |
21 | ROPER S W K, LEE H, HUH M, et al. Simultaneous isotropic and anisotropic multi-material topology optimization for conceptual-level design of aerospace components[J]. Structural and Multidisciplinary Optimization, 2021, 64(1): 441-456. |
22 | MARÍN J C, GRACIANI E. Normal stress flow evaluation in composite aircraft wing sections by strength of material models[J]. Composite Structures, 2022, 282: 115088. |
23 | CHEN J Y, LIU X J, TIAN Y J, et al. 3D-printed anisotropic polymer materials for functional applications[J]. Advanced Materials, 2022, 34(5): e2102877. |
24 | LUND E. Discrete material and thickness optimization of laminated composite structures including failure criteria[J]. Structural and Multidisciplinary Optimization, 2018, 57(6): 2357-2375. |
25 | SJØLUND J H, PEETERS D, LUND E. A new thickness parameterization for discrete material and thickness optimization[J]. Structural and Multidisciplinary Optimization, 2018, 58(5): 1885-1897. |
26 | NIU B, SHAN Y, LUND E. Discrete material optimization of vibrating composite plate and attached piezoelectric fiber composite patch[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 1759-1782. |
27 | DUAN Z Y, YAN J, LEE I, et al. Discrete material selection and structural topology optimization of composite frames for maximum fundamental frequency with manufacturing constraints[J]. Structural and Multidisciplinary Optimization, 2019, 60(5): 1741-1758. |
28 | DUAN Z Y, YAN J, LEE I, et al. A two-step optimization scheme based on equivalent stiffness parameters for forcing convexity of fiber winding angle in composite frames[J]. Structural and Multidisciplinary Optimization, 2019, 59(6): 2111-2129. |
29 | DUAN Z Y, YAN J, LEE I, et al. Integrated design optimization of composite frames and materials for maximum fundamental frequency with continuous fiber winding angles[J]. Acta Mechanica Sinica, 2018, 34(6): 1084-1094. |
30 | YAN J, DUAN Z Y, LUND E, et al. Concurrent multi-scale design optimization of composite frame structures using the Heaviside penalization of discrete material model[J]. Acta Mechanica Sinica, 2016, 32(3): 430-441. |
31 | TIAN S M, WANG M, QI W C. Effects of elastically supported boundaries on flutter characteristics of thin-walled panels[J]. Energies, 2022, 15(19): 7088. |
32 | ZAWADA-MICHAŁOWSKA M, PIEŚKO P, JÓZWIK J, et al. A comparison of the geometrical accuracy of thin-walled elements made of different aluminum alloys[J]. Materials, 2021, 14(23): 7242. |
33 | LIU C N, CHENG H, ZHANG K F, et al. An efficient trans-scale and multi-stage approach for the deformation analysis of large-sized thin-walled composite structure in aircraft assembly[J]. The International Journal of Advanced Manufacturing Technology, 2022, 120(9): 5697-5713. |
34 | XU F F, LI H, ZHANG D X. A study on dynamic characteristics of thin-walled cylindrical cavities with a large aspect ratio[J]. Aerospace, 2022, 9(4): 174. |
35 | ABRAMIAN A, VIROT E, LOZANO E, et al. Nondestructive prediction of the buckling load of imperfect shells[J]. Physical Review Letters, 2020, 125(22): 225504. |
36 | JIAO P, CHEN Z P, MA H, et al. Buckling behaviors of thin-walled cylindrical shells under localized axial compression loads, Part 2: Numerical study[J]. Thin-Walled Structures, 2021, 169: 108330. |
37 | ROZYLO P, FERDYNUS M, DEBSKI H, et al. Progressive failure analysis of thin-walled composite structures verified experimentally[J]. Materials, 2020, 13(5): 1138. |
38 | SZKLAREK K, GAJEWSKI J. Optimisation of the thin-walled composite structures in terms of critical buckling force[J]. Materials, 2020, 13(17): 3881. |
39 | ERKMEN R E. Elastic buckling analysis of thin-walled beams including web-distortion[J]. Thin-Walled Structures, 2022, 170: 108604. |
40 | LUO Y J, ZHAN J J. Linear buckling topology optimization of reinforced thin-walled structures considering uncertain geometrical imperfections[J]. Structural and Multidisciplinary Optimization, 2020, 62(6): 3367-3382. |
41 | PRATO A, AL-SAYMAREE M S M, FEATHERST ON C A, et al. Buckling and post-buckling of thin-walled stiffened panels: Modelling imperfections and joints[J]. Thin-Walled Structures, 2022, 172: 108938. |
42 | SUN Y, TIAN K, LI R, et al. Accelerated Koiter method for post-buckling analysis of thin-walled shells under axial compression[J]. Thin-Walled Structures, 2020, 155: 106962. |
43 | WANG Q N, QIAN C F, WU Z W. Research on the rational design method of strength reinforcement for thin-walled structure based on limit load analysis[J]. Applied Sciences, 2022, 12(4): 2208. |
44 | SIRAJUDEEN R S, SEKAR R. Buckling analysis of pultruded glass fiber reinforced polymer (GFRP) angle sections[J]. Polymers, 2020, 12(11): 2532. |
45 | KASIVISWANATHAN M, UPADHYAY A. Global buckling behavior of blade stiffened compression flange of FRP box-beams[J]. Structures, 2021, 32: 1081-1091. |
46 | ARRANZ S, SOHOULI A, SULEMAN A. Buckling optimization of variable stiffness composite panels for curvilinear fibers and grid stiffeners[J]. Journal of Composites Science, 2021, 5(12): 324. |
47 | ZHANG W H, JIU L P, MENG L. Buckling-constrained topology optimization using feature-driven optimization method[J]. Structural and Multidisciplinary Optimization, 2022, 65(1): 37. |
48 | LIU Y R, WANG L, GU K X, et al. Artificial Neural Network (ANN)-Bayesian Probability Framework (BPF) based method of dynamic force reconstruction under multi-source uncertainties[J]. Knowledge-Based Systems, 2022, 237: 107796. |
49 | SCHITTKOWSKI K. NLPQL: A fortran subroutine solving constrained nonlinear programming problems[J]. Annals of Operations Research, 1986, 5(1): 485-500. |
50 | LI Z Y, LIU Z, LEI Z, et al. An innovative computational framework for the analysis of complex mechanical behaviors of short fiber reinforced polymer composites[J]. Composite Structures, 2021, 277: 114594. |
51 | ZHANG L, LI Z Y, ZHANG H Y, et al. Fatigue failure mechanism analysis and life prediction of short fiber reinforced polymer composites under tension-tension loading[J]. International Journal of Fatigue, 2022, 160: 106880. |
52 | RITZ W. Über eine neue methode zur lösung gewisser variationsprobleme der mathematischen physik[J]. Journal für die reine und angewandte Mathematik, 2009, 1909(135): 1-61 (in German). |
53 | ŽITŇAN P. The Rayleigh-Ritz method still competitive[J]. Journal of Computational and Applied Mathematics, 1994, 54(3): 297-306. |
54 | NEVES M M, RODRIGUES H, GUEDES J M. Generalized topology design of structures with a buckling load criterion[J]. Structural Optimization, 1995, 10(2): 71-78. |
55 | DU J B, OLHOFF N. Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and frequency gaps[J]. Structural and Multidisciplinary Optimization, 2007, 34(2): 91-110. |
56 | MA Z D, KIKUCHI N, CHENG H C, et al. Topological optimization technique for free vibration problems[J]. Journal of Applied Mechanics, 1995, 62(1): 200-207. |
57 | MA Z D, KIKUCHI N, CHENG H C. Topological design for vibrating structures[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 121(1-4): 259-280. |
58 | TADJBAKHSH I, KELLER J B. Strongest columns and isoperimetric inequalities for eigenvalues[J]. Journal of Applied Mechanics, 1962, 29(1): 159. |
59 | ZHENG J C, ZHANG P W, ZHANG D H, et al. A multi-scale submodel method for fatigue analysis of braided composite structures[J]. Materials, 2021, 14(15): 4190. |
60 | ARAI K, YODO K, OKADA H, et al. Ultra-large scale fracture mechanics analysis using a parallel finite element method with submodel technique[J]. Finite Elements in Analysis and Design, 2015, 105: 44-55. |
61 | SUN Y T, ZHAI J J, ZHANG Q, et al. Research of large scale mechanical structure crack growth method based on finite element parametric submodel[J]. Engineering Failure Analysis, 2019, 102: 226-236. |
[1] | 孟亮, 杨金沅, 杨智威, 高彤, 刘洪权, 张卫红. 典型飞机壁板结构的抗屈曲优化设计与试验验证[J]. 航空学报, 2024, 45(5): 529679-529679. |
[2] | 徐慎忍, 何晨, 孙大坤, 袁蔡嘉, 曹东明, 赵家资, 王丁喜. 基于高效特征值分析方法的旋转失速先兆预测[J]. 航空学报, 2023, 44(14): 628248-628248. |
[3] | 米翔, 陈务军, 张祎贝, 李世平, 黄晓惠. 大型CFRP薄壁管桁架加劲环稳定性研究[J]. 航空学报, 2023, 44(12): 227738-227738. |
[4] | 孙晓峰, 董旭, 张光宇, 王卓, 孙大坤. 特征值理论在稳定性预测中的应用研究进展[J]. 航空学报, 2022, 43(10): 527408-527408. |
[5] | 李增聪, 田阔, 赵海心. 面向多级加筋壳的高效变保真度代理模型[J]. 航空学报, 2020, 41(7): 623435-623435. |
[6] | 汪厚冰, 林国伟, 韩雪冰, 李新祥. 复合材料帽形加筋壁板剪切屈曲性能[J]. 航空学报, 2019, 40(8): 222889-222889. |
[7] | 虞翔, 李旦, 张建秋. 鲁棒成形极化敏感阵列波束的方法及极化估计[J]. 航空学报, 2017, 38(6): 320752-320752. |
[8] | 王博, 田阔, 郑岩冰, 郝鹏, 张可. 超大直径网格加筋筒壳快速屈曲分析方法[J]. 航空学报, 2017, 38(2): 220379-220387. |
[9] | 沈海鸥, 王布宏. 扩展酉矩阵束算法实现稀疏可重构天线阵的优化设计[J]. 航空学报, 2016, 37(12): 3811-3820. |
[10] | 胡国才, 刘湘一, 刘书岩, 王允良. 共轴式直升机地面共振机理分析[J]. 航空学报, 2015, 36(6): 1848-1857. |
[11] | 徐征, 曲长文, 骆卉子. 无需中间变量的多运动站时差定位新算法[J]. 航空学报, 2014, 35(6): 1665-1672. |
[12] | 刘小华, 周燕佩, 孙大坤, 马云飞, 孙晓峰. 基于特征值理论的轴流跨声速压气机失稳预测[J]. 航空学报, 2014, 35(11): 2979-2991. |
[13] | 李璐祎, 吕震宙, 李维. 一种新的基本随机变量重要性测度指标体系[J]. 航空学报, 2012, 33(7): 1255-1264. |
[14] | 吕维梁, 招启军, 徐国华. 计入畸变修正的旋翼尾迹前飞状态稳定性分析[J]. 航空学报, 2012, 33(11): 1958-1966. |
[15] | 吕晖, 冯大政, 和洁, 向聪. 一种简化的机载MIMO雷达杂波特征相消器[J]. 航空学报, 2011, 32(5): 866-872. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 111
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 212
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
版权所有 © 航空学报编辑部
版权所有 © 2011航空学报杂志社
主管单位:中国科学技术协会 主办单位:中国航空学会 北京航空航天大学